
JavaScript Coding
Standards
Version: 5.11-CO::1

March 6, 2019

Table of Contents

3/6/2019 i Version: 5.11-CO::1

Chapter 1: Introduction . 1
Chapter 2: JavaScript code quality tool 2

2.1 Installation . 2

2.2 Configuration . 3

Chapter 3: Code Conventions for the JavaScript
Programming Language . 4

3.1 JavaScript Files . 4

3.2 Indentation . 4

3.3 Line Length . 4

3.4 Comments . 5

3.5 Variable Declarations . 5

3.6 Function Declarations . 5

3.7 Names . 8

3.8 Statements . 8

3.8.1 Simple Statements . 8

3.8.2 Compound Statements . 9

3.8.3 return Statement . 9

3.8.4 if Statement . 9

3.8.5 for Statement . 10

3.8.6 while Statement . 10

3.8.7 do Statement . 11

3.8.8 switch Statement . 11

3.8.9 try Statement . 11

3.8.10 continue Statement . 12

3.8.11 with Statement . 12

3.9 Whitespace . 12

3.9.1 {} and [] . 12

3.9.2 , (comma) Operator . 13

3.9.3 Block Scope . 13

3.9.4 Assignment Expressions . 13

3.9.5 === and !== Operators. . 13

3.9.6 Confusing Pluses and Minuses . 13

JavaScript Coding Standards

Version: 5.11-CO::1 ii 3/6/2019

3.9.7 eval is Evil . 13

Revision History . 14

List of Figures . 15

3/6/2019 1 Version: 5.11-CO::1

Chapter 1 - Introduction

CHAPTER 1: INTRODUCTION
The aim of this document is to establish the coding standard and set of tools to be
used to verify and enforce the usage of the standard for javascript code.

Version: 5.11-CO::1 2 3/6/2019

JavaScript Coding Standards

CHAPTER 2: JAVASCRIPT CODE QUALITY TOOL

We are using JSLint.NET as code quality tool. https://jslintnet.codeplex.com/

JSLint.NET is a wrapper for Douglas Crockford's JSLint, the JavaScript code
quality tool. It can validate JavaScript anywhere .NET runs.

JSLint is a static code analysis tool used in software development for checking if
JavaScript source code complies with coding rules. It is provided primarily as an
online tool, but there are also command-line adaptations. It was developed by
Douglas Crockford, author of the book “JavaScript: Good Parts”.

2.1 Installation
JSLint.net can be installed as Visual Studio Extension, search for “jslint.net” in
the Extensions and Updates menu in Visual Studio.

Figure 2-1: JSLint.net Installation

3/6/2019 3 Version: 5.11-CO::1

Chapter 2 - JavaScript code quality tool

2.2 Configuration
JSLint.net could be configured by having JSLintNet.json file in the root of the
project.

Example of the configuration file:

Figure 2-2: Sample Configuration File

Version: 5.11-CO::1 4 3/6/2019

JavaScript Coding Standards

CHAPTER 3: CODE CONVENTIONS FOR THE
JAVASCRIPT PROGRAMMING LANGUAGE

NOTE: Original document can be found on http://javascript.crockford.com/
code.html

This is a set of coding conventions and rules for use in JavaScript programming. It
is inspired by the Sun document Code Conventions for the Java Programming
Language. It is heavily modified of course because JavaScript is not Java.

The long-term value of software to an organization is in direct proportion to the
quality of the codebase. Over its lifetime, a program will be handled by many pairs
of hands and eyes. If a program is able to clearly communicate its structure and
characteristics, it is less likely that it will break when modified in the never-too-
distant future.

Code conventions can help in reducing the brittleness of programs.

All of our JavaScript code is sent directly to the public. It should always be of
publication quality.

Neatness counts.

3.1 JavaScript Files
JavaScript programs should be stored in and delivered as .js files.

JavaScript code should not be embedded in HTML files unless the code is specific
to a single session. Code in HTML adds significantly to pageweight with no
opportunity for mitigation by caching and compression.

<script src=filename.js> tags should be placed as late in the body as
possible. This reduces the effects of delays imposed by script loading on other
page components. There is no need to use the language or type attributes. It is the
server, not the script tag, that determines the MIME type.

3.2 Indentation
The unit of indentation is four spaces. Use of tabs should be avoided because (as of
this writing in the 21st Century) there still is not a standard for the placement of
tabstops. The use of spaces can produce a larger filesize, but the size is not
significant over local networks, and the difference is eliminated by minification.

3.3 Line Length
Avoid lines longer than 80 characters. When a statement will not fit on a single
line, it may be necessary to break it. Place the break after an operator, ideally after
a comma. A break after an operator decreases the likelihood that a copy-paste

3/6/2019 5 Version: 5.11-CO::1

Chapter 3 - Code Conventions for the JavaScript Programming Language

error will be masked by semicolon insertion. The next line should be indented 8
spaces.

3.4 Comments
Be generous with comments. It is useful to leave information that will be read at a
later time by people (possibly yourself) who will need to understand what you
have done. The comments should be well-written and clear, just like the code they
are annotating. An occasional nugget of humor might be appreciated. Frustrations
and resentments will not.

It is important that comments be kept up-to-date. Erroneous comments can make
programs even harder to read and understand.

Make comments meaningful. Focus on what is not immediately visible. Don't
waste the reader's time with stuff like:

 i = 0; // Set i to zero.

Generally, use line comments. Save block comments for formal documentation.

3.5 Variable Declarations
All variables should be declared before used. JavaScript does not require this, but
doing so makes the program easier to read and makes it easier to detect
undeclared variables that may become implied globals. Implied global variables
should never be used. Use of global variables should be minimized.

The var statement should be the first statement in the function body.

It is preferred that each variable be given its own line and comment. They should
be listed in alphabetical order if possible.

 var currentEntry, // currently selected table entry
level, // indentation level size; // size
of table

JavaScript does not have block scope, so defining variables in blocks can confuse
programmers who are experienced with other C family languages. Define all
variables at the top of the function.

3.6 Function Declarations
All functions should be declared before they are used. Inner functions should
follow the var statement. This helps make it clear what variables are included in
its scope.

There should be no space between the name of a function and the ((left
parenthesis) of its parameter list. There should be one space between the) (right
parenthesis) and the { (left curly brace) that begins the statement body. The body

Version: 5.11-CO::1 6 3/6/2019

JavaScript Coding Standards

itself is indented four spaces. The } (right curly brace) is aligned with the line
containing the beginning of the declaration of the function.

function outer(c, d) {

var e = c * d;

function inner(a, b) {

return (e * a) + b;

}

return inner(0, 1);

}

This convention works well with JavaScript because in JavaScript, functions and
object

literals can be placed anywhere that an expression is allowed. It provides the best

readability with inline functions and complex structures.

function getElementsByClassName(className) {

var results = [];

walkTheDOM(document.body, function (node) {

var array, // array of class names

ncn = node.className; // the node's classname

// If the node has a class name, then split it into a list of
simple names.

// If any of them match the requested name, then append the node
to the list of results.

if (ncn && ncn.split(' ').indexOf(className) >= 0) {

results.push(node);

}

});

return results;

}

If a function literal is anonymous, there should be one space between the word
function and the ((left parenthesis). If the space is omitted, then it can appear
that the function's name

is function, which is an incorrect reading.

3/6/2019 7 Version: 5.11-CO::1

Chapter 3 - Code Conventions for the JavaScript Programming Language

div.onclick = function (e) {

return false;

};

that = {

method: function () {

return this.datum;

},

datum: 0

};

Use of global functions should be minimized.

When a function is to be invoked immediately, the entire invocation expression
should be

wrapped in parens so that it is clear that the value being produced is the result of
the

function and not the function itself.

var collection = (function () {

var keys = [], values = [];

return {

get: function (key) {

var at = keys.indexOf(key);

if (at >= 0) {

return values[at];

}

},

set: function (key, value) {

var at = keys.indexOf(key);

if (at < 0) {

at = keys.length;

}

keys[at] = key;

Version: 5.11-CO::1 8 3/6/2019

JavaScript Coding Standards

values[at] = value;

},

remove: function (key) {

var at = keys.indexOf(key);

if (at >= 0) {

keys.splice(at, 1);

values.splice(at, 1);

}

}

};

}());

3.7 Names
Names should be formed from the 26 upper and lower case letters (A .. Z, a ..
z), the 10 digits (0 .. 9), and _ (underbar). Avoid use of international characters
because they may not read well or be understood everywhere. Do not use $ (dollar
sign) or \ (backslash) in names.

Do not use _ (underbar) as the first or last character of a name. It is sometimes
intended to indicate privacy, but it does not actually provide privacy. If privacy is
important, use the forms that provide private members. Avoid conventions that
demonstrate a lack of competence.

Most variables and functions should start with a lower case letter.

Constructor functions that must be used with the new prefix should start with a
capital letter. JavaScript issues neither a compile-time warning nor a run-time
warning if a required new is omitted. Bad things can happen if new is not used, so
the capitalization convention is the only defense we have.

Global variables should be in all caps. (JavaScript does not have macros or
constants, so there isn't much point in using all caps to signify features that
JavaScript doesn't have.)

3.8 Statements

3.8.1 Simple Statements
Each line should contain at most one statement. Put a ; (semicolon) at the end of
every simple statement. Note that an assignment statement that is assigning a
function literal or object literal is still an assignment statement and must end with

3/6/2019 9 Version: 5.11-CO::1

Chapter 3 - Code Conventions for the JavaScript Programming Language

a semicolon.

JavaScript allows any expression to be used as a statement. This can mask some
errors, particularly in the presence of semicolon insertion. The only expressions
that should be used as statements are assignments and invocations.

3.8.2 Compound Statements
Compound statements are statements that contain lists of statements enclosed in
{ } (curly braces).

• The enclosed statements should be indented four more spaces.

• The { (left curly brace) should be at the end of the line that begins the
compound statement.

• The } (right curly brace) should begin a line and be indented to align with
the beginning of the line containing the matching { (left curly brace).

• Braces should be used around all statements, even single statements, when
they are part of a control structure, such as an if or for statement. This makes
it easier to add statements without accidentally introducing bugs.

Labels

Statement labels are optional. Only these statements should be labeled: while,
do, for, switch.

3.8.3 return Statement
A return statement with a value should not use () (parentheses) around the
value. The return value expression must start on the same line as the return
keyword in order to avoid semicolon insertion.

3.8.4 if Statement
The if class of statements should have the following form:

if (condition) {

statements

}

if (condition) {

statements

} else {

statements

}

Version: 5.11-CO::1 10 3/6/2019

JavaScript Coding Standards

if (condition) {

statements

} else if (condition) {

Statements

} else {

statements

}

3.8.5 for Statement
A for class of statements should have the following form:

for (initialization; condition; update) {

statements

}

for (variable in object) {

if (filter) {

statements

}

}

The first form should be used with arrays and with loops of a predeterminable
number of iterations.

The second form should be used with objects. Be aware that members that are
added to the prototype of the object will be included in the enumeration. It is wise
to program defensively by using the hasOwnProperty method to distinguish the
true members of the object:

for (variable in object) {

if (object.hasOwnProperty(variable)) {

statements

}

}

3.8.6 while Statement
A while statement should have the following form:

3/6/2019 11 Version: 5.11-CO::1

Chapter 3 - Code Conventions for the JavaScript Programming Language

while (condition) {

statements

}

3.8.7 do Statement
A do statement should have the following form:

do {

statements

} while (condition);

Unlike the other compound statements, the do statement always ends with a ;
(semicolon).

3.8.8 switch Statement
A switch statement should have the following form:

switch (expression) {

case expression:

statements

default:

statements

}

Each case is aligned with the switch. This avoids over-indentation. A case label
is not a statement and should not be indented like one.

Each group of statements (except the default) should end with break, return, or
throw. Do not fall through.

3.8.9 try Statement
The try class of statements should have the following form:

try {

statements

} catch (variable) {

statements

} try {

Version: 5.11-CO::1 12 3/6/2019

JavaScript Coding Standards

Statements

} catch (variable) {

Statements

} finally {

statements

}

3.8.10 continue Statement
Avoid use of the continue statement. It tends to obscure the control flow of the
function.

3.8.11 with Statement
The with statement should not be used.

3.9 Whitespace
Blank lines improve readability by setting off sections of code that are logically
related.

Blank spaces should be used in the following circumstances:

• A keyword followed by ((left parenthesis) should be separated by a space.
while (true) {

• A blank space should not be used between a function value and its ((left
parenthesis). This helps to distinguish between keywords and function
invocations.

• All binary operators except . (period) and ((left parenthesis) and [(left
bracket) should be separated from their operands by a space.

• No space should separate a unary operator and its operand except when the
operator is a word such as typeof.

• Each ; (semicolon) in the control part of a for statement should be followed
with a space.

• Whitespace should follow every , (comma).

Bonus Suggestions

3.9.1 {} and []
Use {} instead of new Object(). Use [] instead of new Array().

Use arrays when the member names would be sequential integers. Use objects

3/6/2019 13 Version: 5.11-CO::1

Chapter 3 - Code Conventions for the JavaScript Programming Language

when the member names are arbitrary strings or names.

3.9.2 , (comma) Operator
Avoid the use of the comma operator. (This does not apply to the comma
separator, which is used in object literals, array literals, var statements, and
parameter lists.)

3.9.3 Block Scope
In JavaScript blocks do not have scope. Only functions have scope. Do not use
blocks except as required by the compound statements.

3.9.4 Assignment Expressions
Avoid doing assignments in the condition part of if and while statements. Is if
(a = b) { a correct statement? Or is if (a == b) { intended?

Avoid constructs that cannot easily be determined to be correct.

3.9.5 === and !== Operators.
Use the === and !== operators. The == and != operators do type coercion and
should not be used.

3.9.6 Confusing Pluses and Minuses
Be careful to not follow a + with + or ++. This pattern can be confusing. Insert
parens between them to make your intention clear.

total = subtotal + +myInput.value;

is better written as

total = subtotal + (+myInput.value);

so that the + + is not misread as ++.

3.9.7 eval is Evil
The eval function is the most misused feature of JavaScript. Avoid it.

eval has aliases. Do not use the Function constructor. Do not pass strings to
setTimeout or setInterval.

JavaScript Coding Standards

3/6/2019 14 Version: 5.11-CO::1

REVISION HISTORY

Rev. Date Author Summary

1 02-.21-2019 brian.fitzsimmons Created 5.11-CO branch from trunk

JavaScript Coding Standards

3/6/2019 15 Version: 5.11-CO::1

LIST OF FIGURES

Figure 2-1: JSLint.net Installation . 2

Figure 2-2: Sample Configuration File . 3

JavaScript Coding Standards

3/6/2019 16 Version: 5.11-CO::1

End of DocumentEnd of Document

	Chapter 1: Introduction
	Chapter 2: JavaScript code quality tool
	2.1 Installation
	Figure 2-1: JSLint.net Installation

	2.2 Configuration
	Figure 2-2: Sample Configuration File

	Chapter 3: Code Conventions for the JavaScript Programming Language
	3.1 JavaScript Files
	3.2 Indentation
	3.3 Line Length
	3.4 Comments
	3.5 Variable Declarations
	3.6 Function Declarations
	3.7 Names
	3.8 Statements
	3.8.1 Simple Statements
	3.8.2 Compound Statements
	3.8.3 return Statement
	3.8.4 if Statement
	3.8.5 for Statement
	3.8.6 while Statement
	3.8.7 do Statement
	3.8.8 switch Statement
	3.8.9 try Statement
	3.8.10 continue Statement
	3.8.11 with Statement

	3.9 Whitespace
	3.9.1 {} and []
	3.9.2 , (comma) Operator
	3.9.3 Block Scope
	3.9.4 Assignment Expressions
	3.9.5 === and !== Operators.
	3.9.6 Confusing Pluses and Minuses
	3.9.7 eval is Evil

	Revision History

	1
	02-.21-2019
	List of Figures

	End of Document

